The effects of agitator blade geometry and configuration for augmenting heat transfer by agitation in channel flows

Smita Agrawal, Taiho Yeom, Youmin Yu, Mark North, Terrence Simon, Tianhong Cui

Research output: Contribution to conferencePaperpeer-review

Abstract

Translationally oscillating blades, called agitators, can be used to thoroughly mix the flow inside heat exchanger channels such as those in an electronics module heat sink. Generally, throughflow is provided with an induction fan. Agitation is implemented inside the channel by using either multiple agitator blades, agitator blades with notched edges, full-length long-blade agitators or short-blade agitators. The power needed to drive the agitator blades is dependent on the agitation velocity, geometry and mass. The performance features of a 50mm long agitator blade operating at an oscillation frequency of 500Hz, a 15mm short agitator blade operating at a frequency of 1000Hz, and two blades of length 15mm operating at a frequency of 500 Hz have been compared. Also, runs with other geometric changes, like those with added notches at the tip of the agitator, are made to explore their benefits. The intent is that the notches generate additional vorticity at the channel inlet, which is convected downstream enhancing heat transfer as it passes. Thus, this study numerically finds directions toward optimal agitator configurations and geometries that would give heat transfer augmentation without excessive power input. It was found that a multiple agitator blade configuration containing two short blade agitators operating at frequency 500Hz gives the best performance in terms of heat transfer augmentation when power consumption is considered. Heat flux plots on the channel wall and turbulence kinetic energy plots within the channel have been used to explain the mechanisms of heat transfer augmentation for the various cases.

Original languageEnglish (US)
DOIs
StatePublished - 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: Nov 14 2014Nov 20 2014

Other

OtherASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
CountryCanada
CityMontreal
Period11/14/1411/20/14

Keywords

  • Agitator
  • Channel flow
  • Electronics cooling
  • Heat sink

Fingerprint Dive into the research topics of 'The effects of agitator blade geometry and configuration for augmenting heat transfer by agitation in channel flows'. Together they form a unique fingerprint.

Cite this