Abstract
In this paper, turbulent computations of double-cone shock interaction flows are compared with experiments. The low Reynolds number k — ε turbulence model of Jones and Launder is used. Two double-cone models, corresponding to Type VI and Type V shock interactions, were tested at two operating conditions. The flow solutions obtained for the Type VI interactions are essentially laminar and reproduce the experimental data. A laminar flow is also obtained for the Type V interaction at the lower Reynolds number, but the solution in this case over-predicts the separation region. In contrast, the computations for the higher Reynolds number Type V interaction shows significant effect of turbulence. The laminar solution is very different from the experiment whereas accounting for the effect of turbulence improves the computational predictions substantially. In spite of the limitations of the turbulence model, the qualitative trends observed in this study are of interest.
Original language | English (US) |
---|---|
DOIs | |
State | Published - 1999 |
Event | 37th Aerospace Sciences Meeting and Exhibit, 1999 - Reno, United States Duration: Jan 11 1999 → Jan 14 1999 |
Other
Other | 37th Aerospace Sciences Meeting and Exhibit, 1999 |
---|---|
Country/Territory | United States |
City | Reno |
Period | 1/11/99 → 1/14/99 |
Bibliographical note
Publisher Copyright:© 1999 by Krishnendu Sinha.