The dynamic shaping of local cortical circuitry by sex and age, and its relation to pattern comparison processing speed

Research output: Contribution to journalArticlepeer-review

Abstract

Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown that the strength of local neural interactions decreases with distance. Here, we extend that line of research to evaluate effects of sex and age on local cortical circuitry in six cortical areas (superior frontal, precentral, postcentral, superior parietal, inferior parietal, and lateral occipital) using data acquired from 1,054 healthy young adults who participated in the Human Connectome Project. We confirmed previous findings that the strength of zero-lag correlations between prewhitened, resting-state, blood level oxygenation-dependent (BOLD) fMRI time series decreased with distance locally and documented that the rate of decrease with distance (spatial steepness) 1) was progressively lower from anterior to posterior areas, 2) was greater in women, especially in anterior areas, 3) increased with age, particularly for women, 4) was significantly correlated with percent inhibition, and 5) was positively and highly significantly correlated with pattern comparison processing speed (PCPS). A hierarchical tree clustering analysis of this dependence of PCPS on spatial steepness revealed a differential organization in processing that information between the two hemispheres, namely, a more independent vs. a more integrative processing in the left and right hemispheres, respectively. These findings document sex and age differences in dynamic local cortical interactions and provide evidence that spatial sharpening of these interactions may underlie cognitive processing speed differently organized in the two hemispheres.

Original languageEnglish (US)
Pages (from-to)395-404
Number of pages10
JournalJournal of neurophysiology
Volume128
Issue number2
DOIs
StatePublished - Aug 2022

Bibliographical note

Funding Information:
Partial funding for this study was provided by the University of Minnesota (the Anita Kunin Chair in Women's Healthy Brain Aging, the Brain and Genomics Fund, the McKnight Presidential Chair of Cognitive Neuroscience, and the American Legion Brain Sciences Chair) and the US Department of Veterans Affairs.

Funding Information:
Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 National Institutes of Health (NIH) institutes and centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University.

Publisher Copyright:
© 2022 American Physiological Society. All rights reserved.

Keywords

  • age
  • local cortical circuits
  • pattern comparison processing speed
  • resting-state fMRI
  • sex

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'The dynamic shaping of local cortical circuitry by sex and age, and its relation to pattern comparison processing speed'. Together they form a unique fingerprint.

Cite this