The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants

Rebecca Hochstein, Qian Zhang, Michael J Sadowsky, Valery E Forbes

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Capitella teleta is a sediment-dwelling marine polychaete that is often found in high densities in association with organic matter and pollutants. While C. teleta has been reported to transform a variety of aromatic hydrocarbons, the mechanisms by which degradation occurs are unknown. Moreover, there is continuing debate on the role of host and microbiota in degradation activity. The aims of this study were to characterize the gut microbiome of C. teleta and to identify microbiota that could potentially play a role in degradation of organic matter and aromatic hydrocarbons. Sequencing analysis of the 16S rRNA genes from the intestinal tracts of adult worms revealed a unique microbiome that was distinct from that of the worm's sediment food source and fecal pellets. About 66% of the 775 identified OTUs from the C. teleta gut microbiome were found to be unique to the worm and displayed high inter-individual variability. The gut microbiome was dominated by members of the genera Arcobacter, Pseudoalteromonas, Methylobacterium, and Propionibacterium. Functional analyses of microbiota revealed that hydrocarbon treatment led to a proliferation of gene classes involved in chemoheterotrophy and aromatic compound degradation. Of the 18 most abundant taxa identified, 50% were members of genera containing hydrocarbon (PAH)-degrading members, including Acinetobacter, Thalassotalea, and Achromobacter. Data obtained in this study will be useful to understand the biology of this marine polychaete and to elucidate the role that gut bacteria play in worm catabolism and the transformation of sediment organic pollutants.

Original languageEnglish (US)
Pages (from-to)547-554
Number of pages8
JournalScience of the Total Environment
Volume670
DOIs
StatePublished - Jun 20 2019

Bibliographical note

Funding Information:
This work was funded by the University of Minnesota . We thank Jeonghwan Jang for help with this manuscript, Glenn Lopez for assistance with field sediment collection, and Kelly Aukema and Larry Wackett for their assistance with fluoranthene extraction and analysis.

Publisher Copyright:
© 2019

Keywords

  • Aromatic hydrocarbon
  • Bioremediation
  • DNA sequence
  • Fluoranthene
  • Microbiome
  • Polychaete

Fingerprint

Dive into the research topics of 'The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants'. Together they form a unique fingerprint.

Cite this