TY - JOUR
T1 - The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients
AU - Botta, A.
AU - Rinaldi, F.
AU - Catalli, C.
AU - Vergani, L.
AU - Bonifazi, E.
AU - Romeo, V.
AU - Loro, E.
AU - Viola, A.
AU - Angelini, C.
AU - Novelli, G.
PY - 2008/10
Y1 - 2008/10
N2 - Background: Myotonic dystrophy type 1 is caused by an unstable (CTG)n repetition located in the 3'UTR of the DM protein kinase gene (DMPK). Untranslated expanded DMPK transcripts are retained in ribonuclear foci which sequester CUG-binding proteins essential for the maturation of pre-mRNAs. Aim: To investigate the effects of CTG expansion length on three molecular parameters associated with the DM1 muscle pathology: (1) the expression level of the DMPK gene; (2) the degree of splicing misregulation; and (3) the number of ribonuclear foci. Methods: Splicing analysis of the IR, MBNL1, c-TNT and CLCN1 genes, RNA-FISH experiments and determination of the DMPK expression on muscle samples from DM1 patients with an expansion below 500 repetitions (n = 6), DM1 patients carrying a mutation above 1000 CTGs (n = 6), and from controls (n = 6). Results: The level of aberrant splicing of the IR, MBNL1, c-TNT and CLCN1 genes is different between the two groups of DM1 muscle samples and correlates with the CTG repeat length. RNA-FISH analysis revealed that the number of ribonuclear foci in DM1 muscle sections increases in patients with a higher (CTG)n number. No relationships were found between the expression level of the DMPK gene transcript and average expansion sizes. Conclusion: The CTG repeat length plays a key role in the extent of splicing misregulation and foci formation, thus providing a useful link between the genotype and the molecular cellular phenotype in DM1.
AB - Background: Myotonic dystrophy type 1 is caused by an unstable (CTG)n repetition located in the 3'UTR of the DM protein kinase gene (DMPK). Untranslated expanded DMPK transcripts are retained in ribonuclear foci which sequester CUG-binding proteins essential for the maturation of pre-mRNAs. Aim: To investigate the effects of CTG expansion length on three molecular parameters associated with the DM1 muscle pathology: (1) the expression level of the DMPK gene; (2) the degree of splicing misregulation; and (3) the number of ribonuclear foci. Methods: Splicing analysis of the IR, MBNL1, c-TNT and CLCN1 genes, RNA-FISH experiments and determination of the DMPK expression on muscle samples from DM1 patients with an expansion below 500 repetitions (n = 6), DM1 patients carrying a mutation above 1000 CTGs (n = 6), and from controls (n = 6). Results: The level of aberrant splicing of the IR, MBNL1, c-TNT and CLCN1 genes is different between the two groups of DM1 muscle samples and correlates with the CTG repeat length. RNA-FISH analysis revealed that the number of ribonuclear foci in DM1 muscle sections increases in patients with a higher (CTG)n number. No relationships were found between the expression level of the DMPK gene transcript and average expansion sizes. Conclusion: The CTG repeat length plays a key role in the extent of splicing misregulation and foci formation, thus providing a useful link between the genotype and the molecular cellular phenotype in DM1.
UR - http://www.scopus.com/inward/record.url?scp=54049141673&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=54049141673&partnerID=8YFLogxK
U2 - 10.1136/jmg.2008.058909
DO - 10.1136/jmg.2008.058909
M3 - Article
C2 - 18611984
AN - SCOPUS:54049141673
SN - 0022-2593
VL - 45
SP - 639
EP - 646
JO - Journal of medical genetics
JF - Journal of medical genetics
IS - 10
ER -