The C2-spectrum Tmf1(3) and its invertible modules

Michael A. Hill, Lennart Meier

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

We explore the C2-equivariant spectra Tmf1(3)and TMF1(3). In particular, we compute their C2-equivariant Picard groups and the C2-equivariant Anderson dual of Tmf1(3). This implies corresponding results for the fixed-point spectra TMF0(3)and Tmf0(3). Furthermore, we prove a real Landweber exact functor theorem.

Original languageEnglish (US)
Pages (from-to)1953-2011
Number of pages59
JournalAlgebraic and Geometric Topology
Volume17
Issue number4
DOIs
StatePublished - Aug 3 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017, Mathematical Sciences Publishers. All rights reserved.

Keywords

  • Anderson duality
  • Picard group
  • Real homotopy theory
  • Topological modular forms

Fingerprint

Dive into the research topics of 'The C2-spectrum Tmf1(3) and its invertible modules'. Together they form a unique fingerprint.

Cite this