Projects per year
Abstract
We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 7444-7454 |
| Number of pages | 11 |
| Journal | ACS nano |
| Volume | 18 |
| Issue number | 10 |
| DOIs | |
| State | Published - Mar 12 2024 |
Bibliographical note
Publisher Copyright:© 2024 American Chemical Society.
Keywords
- charge transport
- conductance isotope effect (CIE)
- hopping
- molecular wires
- polaron
MRSEC Support
- Shared
PubMed: MeSH publication types
- Journal Article
Fingerprint
Dive into the research topics of 'The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings'. Together they form a unique fingerprint.Projects
- 1 Active
-
University of Minnesota Materials Research Science and Engineering Center (DMR-2011401)
Leighton, C. (PI) & Lodge, T. (CoI)
THE NATIONAL SCIENCE FOUNDATION
9/1/20 → 8/31/26
Project: Research project