TY - JOUR
T1 - The changepoint model for statistical process control
AU - Hawkins, Douglas M
AU - Qiu, Peihua
AU - Kang, Chang Wook
PY - 2003/10
Y1 - 2003/10
N2 - Statistical process control (SPC) requires statistical methodologies that detect changes in the pattern of data over time. The common methodologies, such as Shewhart, cumulative sum (cusum), and exponentially weighted moving average (EWMA) charting, require the in-control values of the process parameters, but these are rarely known accurately. Using estimated parameters, the run length behavior changes randomly from one realization to another, making it impossible to control the run length behavior of any particular chart. A suitable methodology for detecting and diagnosing step changes based on imperfect process knowledge is the unknown-parameter changepoint formulation. Long recognized as a Phase I analysis tool, we argue that it is also highly effective in allowing the user to progress seamlessly from the start of Phase I data gathering through Phase II SPC monitoring. Despite not requiring specification of the post-change process parameter values, its performance is never far short of that of the optimal cusum chart which requires this knowledge, and it is far superior for shifts away from the cusum shift for which the cusum chart is optimal. As another benefit, while changepoint methods are designed for step changes that persist, they are also competitive with the Shewhart chart, the chart of choice for isolated non-sustained special causes.
AB - Statistical process control (SPC) requires statistical methodologies that detect changes in the pattern of data over time. The common methodologies, such as Shewhart, cumulative sum (cusum), and exponentially weighted moving average (EWMA) charting, require the in-control values of the process parameters, but these are rarely known accurately. Using estimated parameters, the run length behavior changes randomly from one realization to another, making it impossible to control the run length behavior of any particular chart. A suitable methodology for detecting and diagnosing step changes based on imperfect process knowledge is the unknown-parameter changepoint formulation. Long recognized as a Phase I analysis tool, we argue that it is also highly effective in allowing the user to progress seamlessly from the start of Phase I data gathering through Phase II SPC monitoring. Despite not requiring specification of the post-change process parameter values, its performance is never far short of that of the optimal cusum chart which requires this knowledge, and it is far superior for shifts away from the cusum shift for which the cusum chart is optimal. As another benefit, while changepoint methods are designed for step changes that persist, they are also competitive with the Shewhart chart, the chart of choice for isolated non-sustained special causes.
KW - Cumulative sum control charts
KW - Exponentially weighted moving average control charts
KW - Shewhart control charts
UR - http://www.scopus.com/inward/record.url?scp=1642519908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1642519908&partnerID=8YFLogxK
U2 - 10.1080/00224065.2003.11980233
DO - 10.1080/00224065.2003.11980233
M3 - Article
AN - SCOPUS:1642519908
SN - 0022-4065
VL - 35
SP - 355
EP - 366
JO - Journal of Quality Technology
JF - Journal of Quality Technology
IS - 4
ER -