The cavefish genome reveals candidate genes for eye loss

Suzanne E. McGaugh, Joshua B. Gross, Bronwen Aken, Maryline Blin, Richard Borowsky, Domitille Chalopin, Hélène Hinaux, William R. Jeffery, Alex Keene, Li Ma, Patrick Minx, Daniel Murphy, Kelly E. O'Quin, Sylvie Rétaux, Nicolas Rohner, Steve M.J. Searle, Bethany A. Stahl, Cliff Tabin, Jean Nicolas Volff, Masato YoshizawaWesley C. Warren

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.

Original languageEnglish (US)
Article number5307
JournalNature communications
Volume5
DOIs
StatePublished - Oct 20 2014

Bibliographical note

Funding Information:
This work was supported by NIH grant R24 RR032658-01 to W.C.W. and The Genome Institute at Washington University School of Medicine. Collections were conducted with Mexican Permit Number 040396-213-03 granted to W.R.J. This work was also supported by the Wellcome Trust (grant numbers WT095908 and WT098051) and the European Molecular Biology Laboratory. Shisa2 qPCR work benefited from the facilities and expertise of the QPCR platform of IMAGIF (Centre de Recherche de Gif-www. imagif.cnrs.fr). This work was supported in part by the National Institutes of Health (NIDCR) grant DE022403 to J.B.G. We thank J. Tabin for technical assistance. We are grateful for resources from the University of Minnesota Supercomputing Institute.

Publisher Copyright:
© 2014 Macmillan Publishers Limited. All rights reserved.

Fingerprint Dive into the research topics of 'The cavefish genome reveals candidate genes for eye loss'. Together they form a unique fingerprint.

Cite this