The C. elegans truncated insulin receptor DAF-2B regulates survival of L1 arrested larvae

Bryan A. Martinez, Matthew S. Gill

Research output: Contribution to journalArticlepeer-review

Abstract

We have previously characterized a truncated isoform of the C. elegans insulin-like receptor, DAF-2B, which retains the ligand binding domain but cannot transduce a signal due to the absence of the intracellular signaling domain. DAF-2B modifies insulin/insulin-like growth factor signaling-dependent processes, such as dauer formation and lifespan, by sequestering insulin-like peptides (ILP) and preventing signaling through full length DAF-2 receptors. Here we show that DAF-2B is also important for starvation resistance, as genetic loss of daf-2b reduces survival in arrested first stage larvae (L1). Under fed conditions, we observe daf-2b splicing capacity in both the intestine and the hypodermis, but in starved L1s this becomes predominantly hypodermal. Using a novel splicing reporter system, we observe an increase in the ratio of truncated to full length insulin receptor splicing capacity in starved L1 larvae compared with fed, that may indicate a decrease in whole body insulin responsiveness. Consistent with this, overexpression of DAF-2B from the hypodermis, but not the intestine, confers increased survival to L1 animals under starvation conditions. Our findings demonstrate that the truncated insulin receptor DAF-2B is involved in the response to L1 starvation and promotes survival when expressed from the hypodermis.

Original languageEnglish (US)
Article numbere0288764
JournalPloS one
Volume18
Issue number7 July
DOIs
StatePublished - Jul 2023

Bibliographical note

Publisher Copyright:
Copyright: © 2023 Martinez, Gill. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'The C. elegans truncated insulin receptor DAF-2B regulates survival of L1 arrested larvae'. Together they form a unique fingerprint.

Cite this