TY - JOUR
T1 - The binding site of chicken hepatic lectin.
AU - Sikder, S. K.
AU - Kabat, E. A.
AU - Steer, C. J.
AU - Ashwell, G.
PY - 1983/10/25
Y1 - 1983/10/25
N2 - The binding site of the chicken hepatic lectin involved in the clearance of N-acetylglucosamine-terminated serum glycoproteins was explored by a competitive binding assay using 3H-labeled agalacto-orosomucoid and various glycoproteins, polysaccharides, monosaccharides, and glycosides as inhibitors. The binding site is relatively small, involving a terminal nonreducing DGlcNAc structure with an equatorial N-acetamido group on carbon 2 and an equatorial hydroxyl group on carbon 4. Among the mono- and oligosaccharides tested, benzyl alpha DGlcNAc was the best inhibitor, being three times as effective as DGlcNAc; and in general, all alpha-anomeric glycosides were better than beta-glycosides. All oligosaccharides with terminal nonreducing beta DGlcNAc have almost the same inhibitory power, whereas those with nonreducing DGlc or DGal were relatively inactive. Among the serum and blood group glycoproteins, a Smith degraded human H substance with several exposed terminal nonreducing beta DGlcNAc residues was the most active and twice as effective as agalacto-orosomucoid and an A substance, Hog 75 10% precipitate. Almost all hog preparations, some with A or with H activity, were equally effective. A glycopeptide with terminal DGlcNAc was twice as active as one with terminal nonreducing DMan and DGlcNAc residues and almost three times as potent as one with terminal nonreducing DGal; a glycopeptide with terminal sialic acid was inactive. The slopes of the inhibition lines differed, reflecting the heterogeneity of the various determinant groups on the glycoproteins.
AB - The binding site of the chicken hepatic lectin involved in the clearance of N-acetylglucosamine-terminated serum glycoproteins was explored by a competitive binding assay using 3H-labeled agalacto-orosomucoid and various glycoproteins, polysaccharides, monosaccharides, and glycosides as inhibitors. The binding site is relatively small, involving a terminal nonreducing DGlcNAc structure with an equatorial N-acetamido group on carbon 2 and an equatorial hydroxyl group on carbon 4. Among the mono- and oligosaccharides tested, benzyl alpha DGlcNAc was the best inhibitor, being three times as effective as DGlcNAc; and in general, all alpha-anomeric glycosides were better than beta-glycosides. All oligosaccharides with terminal nonreducing beta DGlcNAc have almost the same inhibitory power, whereas those with nonreducing DGlc or DGal were relatively inactive. Among the serum and blood group glycoproteins, a Smith degraded human H substance with several exposed terminal nonreducing beta DGlcNAc residues was the most active and twice as effective as agalacto-orosomucoid and an A substance, Hog 75 10% precipitate. Almost all hog preparations, some with A or with H activity, were equally effective. A glycopeptide with terminal DGlcNAc was twice as active as one with terminal nonreducing DMan and DGlcNAc residues and almost three times as potent as one with terminal nonreducing DGal; a glycopeptide with terminal sialic acid was inactive. The slopes of the inhibition lines differed, reflecting the heterogeneity of the various determinant groups on the glycoproteins.
UR - http://www.scopus.com/inward/record.url?scp=0021112683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021112683&partnerID=8YFLogxK
M3 - Article
C2 - 6630198
AN - SCOPUS:0021112683
SN - 0021-9258
VL - 258
SP - 12520
EP - 12525
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -