The B73 maize genome: Complexity, diversity, and dynamics

Patrick S. Schnable, Doreen Ware, Robert S. Fulton, Joshua C. Stein, Fusheng Wei, Shiran Pasternak, Chengzhi Liang, Jianwei Zhang, Lucinda Fulton, Tina A. Graves, Patrick Minx, Amy Denise Reily, Laura Courtney, Scott S. Kruchowski, Chad Tomlinson, Cindy Strong, Kim Delehaunty, Catrina Fronick, Bill Courtney, Susan M. RockEddie Belter, Feiyu Du, Kyung Kim, Rachel M. Abbott, Marc Cotton, Andy Levy, Pamela Marchetto, Kerri Ochoa, Stephanie M. Jackson, Barbara Gillam, Weizu Chen, Le Yan, Jamey Higginbotham, Marco Cardenas, Jason Waligorski, Elizabeth Applebaum, Lindsey Phelps, Jason Falcone, Krishna Kanchi, Thynn Thane, Adam Scimone, Nay Thane, Jessica Henke, Tom Wang, Jessica Ruppert, Neha Shah, Kelsi Rotter, Jennifer Hodges, Elizabeth Ingenthron, Nathan M. Springer

Research output: Contribution to journalArticlepeer-review

3184 Scopus citations


We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylationpoor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.

Original languageEnglish (US)
Pages (from-to)1112-1115
Number of pages4
Issue number5956
StatePublished - Nov 20 2009


Dive into the research topics of 'The B73 maize genome: Complexity, diversity, and dynamics'. Together they form a unique fingerprint.

Cite this