Projects per year
Abstract
Autonomization is a physiological process allowing a flap to develop neo-vascularization from the reconstructed wound bed. This phenomenon has been used since the early application of flap surgeries but still remains poorly understood. Reconstructive strategies have greatly evolved since, and fasciocutaneous flaps have progressively replaced muscle-based reconstructions, ensuring better functional outcomes with great reliability. However, plastic surgeons still encounter challenges in complex cases where conventional flap reconstruction reaches its limitations. Furthermore, emerging bioengineering applications, such as decellularized scaffolds allowing a complex extracellular matrix to be repopulated with autologous cells, also face the complexity of revascularization. The objective of this article is to gather evidence of autonomization phenomena. A systematic review of flap autonomization is then performed to document the minimum delay allowing this process. Finally, past and potential applications in bio- and tissue-engineering approaches are discussed, highlighting the potential for in vivo revascularization of acellular scaffolds.
Original language | English (US) |
---|---|
Article number | 1440 |
Journal | Bioengineering |
Volume | 10 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- autonomisation
- autonomization
- decellularization
- flap bioengineering
- flap neo-vascularization
- flap revascularization
- scaffold revascularization
- tissue engineering
- tissue perfusion
PubMed: MeSH publication types
- Journal Article
- Review
Fingerprint
Dive into the research topics of 'The Autonomization Principle in Vascularized Flaps: An Alternative Strategy for Composite Tissue Scaffold In Vivo Revascularization'. Together they form a unique fingerprint.Projects
- 1 Active
-
ATP-Bio: NSF Engineering Research Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio)
Bischof, J. C. (PI), Toner, M. (CoPI), Aguilar, G. (CoPI), Healy, K. E. (CoPI), Uygun, K. (Key Personnel), Burger, A. A. (Project Manager), Wolf, S. M. (Key Personnel), Roehrig, G. H. (Key Personnel), Heremans, C. (Coordinator), McAlpine, M. (Key Personnel), Mangolini, L. (Key Personnel), Uygun, B. E. (Key Personnel), Finger, E. B. (Key Personnel), Garwood, M. (Key Personnel), Dames, C. (Key Personnel), Powell-Palm, M. J. (Key Personnel), Franklin, R. R. (Key Personnel), Singh, B. N. (Key Personnel), Yin, Y. (Key Personnel), Usta, O. B. (Key Personnel), Rubinsky, B. (Key Personnel), Tessier, S. N. (Key Personnel), Sandlin, R. D. (Key Personnel), Kangas, J. R. (Key Personnel), Iaizzo, P. A. (Key Personnel), Irimia, D. (Key Personnel), Ogle, B. M. (Key Personnel), Stadler, B. J. (Key Personnel), Bangalore Kodandaramaiah, S. (Key Personnel), Aksan, A. (Key Personnel) & Rabin, Y. (Key Personnel)
9/1/20 → 8/31/25
Project: Research and Outreach Center