TY - JOUR
T1 - The Asymptotic Number of Irreducible Partitions
AU - Bender, Edward A.
AU - Odlyzko, Andrew M.
AU - Richmond, L. Bruce
PY - 1985
Y1 - 1985
N2 - A partition of [1, n] = {1,..., n} is called irreducible if no proper subinterval of [1, n] is a union of blocks. We determine the asymptotic relationship between the numbers of irreducible partitions, partitions without singleton blocks, and all partitions when the block sizes must lie in some specified set.
AB - A partition of [1, n] = {1,..., n} is called irreducible if no proper subinterval of [1, n] is a union of blocks. We determine the asymptotic relationship between the numbers of irreducible partitions, partitions without singleton blocks, and all partitions when the block sizes must lie in some specified set.
UR - http://www.scopus.com/inward/record.url?scp=0037561355&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037561355&partnerID=8YFLogxK
U2 - 10.1016/S0195-6698(85)80015-9
DO - 10.1016/S0195-6698(85)80015-9
M3 - Article
AN - SCOPUS:0037561355
SN - 0195-6698
VL - 6
SP - 1
EP - 6
JO - European Journal of Combinatorics
JF - European Journal of Combinatorics
IS - 1
ER -