The antinociceptive and antihyperalgesic effects of topical propofol on dorsal horn neurons in the rat

Kenichi Takechi, Mirela Iodi Carstens, Amanda H. Klein, E. Carstens

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

BACKGROUND: Propofol (2,6-diisopropylphenol) is an IV anesthetic used for general anesthesia. Recent evidence suggests that propofol-anesthetized patients experience less postoperative pain, and that propofol has analgesic properties when applied topically. We presently investigated the antinociceptive effects of topical propofol using behavioral and single-unit electrophysiological methods in rats. METHODS: In behavioral experiments with rats, we assessed the effect of topical hindpaw application of propofol (1%-25%) on heat and mechanically evoked paw withdrawals. In electrophysiological experiments, we recorded from lumbar dorsal horn wide dynamic range (WDR)-type neurons in pentobarbital- anesthetized rats. We assessed the effect of topical application of propofol to the ipsilateral hindpaw on neuronal responses elicited by noxious heat, cold, and mechanical stimuli. We additionally tested whether propofol blocks heat sensitization of paw withdrawals and WDR neuronal responses induced by topical application of allyl isothiocyanate (AITC; mustard oil). RESULTS: Topical application of propofol (1%-25%) significantly increased the mean latency of the thermally evoked hindpaw withdrawal reflex on the treated (but not opposite) side in a concentration-dependent manner, with no effect on mechanically evoked hindpaw withdrawal thresholds. Propofol also prevented shortening of paw withdrawal latency induced by AITC. In electrophysiological experiments, topical application of 10% and 25% propofol, but not 1% propofol or vehicle (10% intralipid), to the ipsilateral hindpaw significantly attenuated the magnitude of responses of WDR neurons to noxious heating of glabrous hindpaw skin with no significant change in thermal thresholds. Maximal suppression of noxious heat-evoked responses was achieved 15 minutes after application followed by recovery to the pre-propofol baseline by 30 minutes. Responses to skin cooling or graded mechanical stimuli were not significantly affected by any concentration of propofol. Topical application of AITC enhanced the noxious heat-evoked response of dorsal horn neurons. This enhancement of heat-evoked responses was attenuated when 10% propofol was applied topically after application of AITC. CONCLUSIONS: The results indicate that topical propofol inhibits responses of WDR neurons to noxious heat consistent with analgesia, and reduced AITC sensitization of WDR neurons consistent with an antihyperalgesic effect. These results are consistent with clinical studies demonstrating reduced postoperative pain in surgical patients anesthetized with propofol. The mechanism of analgesic action of topical propofol is not clear, but may involve desensitization of TRPV1 or TRPA1 receptors expressed in peripheral nociceptive nerve endings, engagement of endocannabinoids, or activation of peripheral γ-aminobutyric acid A receptors.

Original languageEnglish (US)
Pages (from-to)932-938
Number of pages7
JournalAnesthesia and analgesia
Volume116
Issue number4
DOIs
StatePublished - May 2013

Fingerprint

Dive into the research topics of 'The antinociceptive and antihyperalgesic effects of topical propofol on dorsal horn neurons in the rat'. Together they form a unique fingerprint.

Cite this