Abstract
Cooperative networks provide enhanced system performance by exploiting spatial diversity in a distributed manner. Optimum resource allocation can help improve the performance of cooperative networks and increase the efficiency of resource usage. In the literature, various system performance and optimization results have been reported for different systems and with different optimization metrics. However, there lacks a unifying framework delineating the effects of different factors on resource optimization and the resultant benefit. In this paper, we investigate the relative effects of optimization metric (error rate versus outage probability), modulation type (coherent versus differential) and relaying protocol (amplify-and-forward (AF) versus decode-and-forward (DF)). To facilitate such a case study, we provide a comprehensive set of system performance for four commonly adopted cooperative systems: coherent amplify-and-forward (CAF), coherent decode-and-forward (CDF), differential amplify-and-forward (DAF), and differential decode-and-forward (DDF). A resource optimization problem that minimizes the total transmit energy is formulated. Since energy optimization has been intensively studied in the literature, location optimization will be investigated. The analyses and simulations suggest that: i) The error rate and outage probability metrics yield similar optimization results for AF relaying systems; ii) The relaying protocol determines the optimization results while the modulation type has no effect; and iii) The difference between different relaying protocols diminishes when the number of relays increases.
Original language | English (US) |
---|---|
Article number | 6353400 |
Pages (from-to) | 4351-4361 |
Number of pages | 11 |
Journal | IEEE Transactions on Wireless Communications |
Volume | 11 |
Issue number | 12 |
DOIs | |
State | Published - 2012 |
Externally published | Yes |
Bibliographical note
Funding Information:Manuscript received October 10, 2011; revised April 9 and August 17, 2012; accepted September 16, 2012. The associate editor coordinating the review of this paper and approving it for publication was S. Valaee. This work is in part supported by the National Science Foundation under grant #1129043. Part of the results in this paper was presented at the Wireless Communications and Networking Conference, Budapest, Hungary, 2009. R. Cao is with the LSI Corporation, Milpitas, USA (e-mail: [email protected]). L. Yang is with the Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA (e-mail: [email protected]). Digital Object Identifier 10.1109/TWC.2012.102612.111845
Keywords
- Cooperative networks
- error performance
- resource optimization