THE advanced camera for surveys nearby galaxy survey treasury. IV. the star formation history of NGC 2976

Benjamin F. Williams, Julianne J. Dalcanton, Adrienne Stilp, Karoline M. Gilbert, Rok Rokar, Anil C. Seth, Daniel Weisz, Andrew Dolphin, Stephanie M. Gogarten, Evan D Skillman, Jon Holtzman

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or ∼ 6 scale lengths. The outer disk was imaged to a depth of M F606W ∼ 1, and an inner field was imaged to the crowding limit at a depth of M F606W -1. Through detailed analysis and modeling of the resulting color-magnitude diagrams, we have reconstructed the star formation history (SFH) of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured SFH, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyr, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group ≳1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.

Original languageEnglish (US)
Pages (from-to)135-148
Number of pages14
JournalAstrophysical Journal
Issue number1
StatePublished - 2010


  • Galaxies: evolution
  • Galaxies: individual (NGC 2976)
  • Galaxies: spiral
  • Galaxies: stellar content


Dive into the research topics of 'THE advanced camera for surveys nearby galaxy survey treasury. IV. the star formation history of NGC 2976'. Together they form a unique fingerprint.

Cite this