The Ability to Reproducibly Record Cardiac Action Potentials from Multiple Anatomic Locations: Endocardially and Epicardially, in Situ and in Vitro

Megan M. Schmidt, Thuy Hoang, Paul Anthony Iaizzo

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Objective: For cardiac arrhythmia mapping and ablation procedures, the ability to record focal cardiac action potentials could aid in precisely identifying lesions, scarred tissue, and/or arrhythmic foci. Our study objective was to validate the electrophysiologic properties of a routinely employed large mammalian in vitro working heart model. Methods: Monophasic action potentials (MAPs) were recorded from 18 swine hearts during viable hemodynamic function both in situ (postmedian sternotomy) and in vitro (using Visible Heart methodologies). We placed specially designed mapping catheters in epicardial and endocardial locations. High-quality MAP signals were recorded for up to 2 h, and MATLAB was utilized to evaluate relative duration and temporal/regional changes in waveform morphology. Results: MAPs were reproducibly recorded from both epicardial and endocardial locations in situ and in vitro. No significant differences were noted in right atrial endocardial, right ventricular endocardial, right ventricular epicardial, or left atrial epicardial waveforms, when baseline recordings were compared to all other in situ and in vitro time points. Furthermore, MAP duration between right ventricular endocardial and epicardial waveforms was not significantly different, in situ or in vitro. Conclusion: The use of in vitro models like the Visible Heart is considered invaluable for the study of cardiac arrhythmias, the development of novel therapies, and/or preclinical testing of future cardiac mapping catheters and systems. Significance: Preclinical studies assessing in situ and/or in vitro recorded cardiac monophasic action potentials could be critical for the future development and validation of cardiac devices.

Original languageEnglish (US)
Article number8357955
Pages (from-to)159-164
Number of pages6
JournalIEEE Transactions on Biomedical Engineering
Volume66
Issue number1
DOIs
StatePublished - Jan 2019

Keywords

  • Cardiac ablation
  • in vitro model
  • medical device development and assessment
  • monophasic action potential

PubMed: MeSH publication types

  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint Dive into the research topics of 'The Ability to Reproducibly Record Cardiac Action Potentials from Multiple Anatomic Locations: Endocardially and Epicardially, in Situ and in Vitro'. Together they form a unique fingerprint.

  • Cite this