TY - JOUR
T1 - The abelian/nonabelian correspondence and frobenius manifolds
AU - Ciocan-Fontanine, Ionuţ
AU - Kim, Bumsig
AU - Sabbah, Claude
PY - 2008/2
Y1 - 2008/2
N2 - We propose an approach via Frobenius manifolds to the study (began in [BCK2] of the relation between rational Gromov-Witten invariants of nonabelian quotients X//G and those of the corresponding "abelianized" quotients X//T, for T a maximal torus in G. The ensuing conjecture expresses the Gromov-Witten potential of X//G in terms of the potential of X//T. We prove this conjecture when the nonabelian quotients are partial flag manifolds.
AB - We propose an approach via Frobenius manifolds to the study (began in [BCK2] of the relation between rational Gromov-Witten invariants of nonabelian quotients X//G and those of the corresponding "abelianized" quotients X//T, for T a maximal torus in G. The ensuing conjecture expresses the Gromov-Witten potential of X//G in terms of the potential of X//T. We prove this conjecture when the nonabelian quotients are partial flag manifolds.
UR - http://www.scopus.com/inward/record.url?scp=37849003715&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37849003715&partnerID=8YFLogxK
U2 - 10.1007/s00222-007-0082-x
DO - 10.1007/s00222-007-0082-x
M3 - Article
AN - SCOPUS:37849003715
SN - 0020-9910
VL - 171
SP - 301
EP - 343
JO - Inventiones Mathematicae
JF - Inventiones Mathematicae
IS - 2
ER -