TY - JOUR
T1 - The μ-opioid receptor down-regulates differently from the δ-opioid receptor
T2 - Requirement of a high affinity receptor/G protein complex formation
AU - Chakrabarti, Sumita
AU - Yang, Wanling
AU - Law, Ping-Yee
AU - Loh, Horace H
PY - 1997/7
Y1 - 1997/7
N2 - Chronic opioid treatment of Neuro(2A) cells stably expressing either δ- opioid receptor (DOR) or μ-opioid receptor (MOR) resulted in agonist- dependent receptor down-regulation. Although there is high homology in the DOR and MOR amino acid sequences, there is an apparent difference in the regulation of the cellular levels of these two receptors. The ability of 24- hr [D-Pen2,D-Pen5]enkephalin (DPDPE) treatment to internalize and down- regulate DORs expressed in Neuro(2A) remained intact after pertussis toxin (PTX) pretreatment, which uncouples the receptor from G proteins. In contrast, the ability of [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAMGO) to internalize and down-regulate MORs in Neuro(2A) cells was completely abolished by PTX pretreatment. The requirement of functional MOR but not DOR in agonist-induced receptor down-regulation was further demonstrated by site- directed mutagenesis of the receptors. When Asp114 in transmembrane 2 of MOR was converted to alanine, the ability was abolished of DAMGO or morphine to inhibit forskolin-stimulated [3H]cAMP production in Neuro(2A) cells stably expressing this mutant receptor. There was a parallel decrease in agonist affinity and elimination of the agonist-induced receptor down-regulation. On the other hand, although the equivalent mutation of Asp95 to alanine in DOR likewise resulted in the inability of DPDPE to inhibit [3H]cAMP production, the ability of DPDPE to down-regulate this mutant receptor after 24-hr treatment was unaffected. This difference in MOR and DOR down-regulation could be caused by the differences in the ability of these two receptors to form high affinity complexes with G proteins. DOR retained the ability to form high affinity complexes even after PTX pretreatment or after mutation of Asp95 in transmembrane 2. In contrast, MOR existed only in the low affinity, uncoupled state after PTX pretreatment or after conversion of Asp114 to alanine. Therefore, in Neuro(2A) cells, agonist-induced opioid receptor down- regulation seems to depend directly on the formation of the high affinity receptor complexes and not on the activation of the receptors and subsequent transduction of the signals.
AB - Chronic opioid treatment of Neuro(2A) cells stably expressing either δ- opioid receptor (DOR) or μ-opioid receptor (MOR) resulted in agonist- dependent receptor down-regulation. Although there is high homology in the DOR and MOR amino acid sequences, there is an apparent difference in the regulation of the cellular levels of these two receptors. The ability of 24- hr [D-Pen2,D-Pen5]enkephalin (DPDPE) treatment to internalize and down- regulate DORs expressed in Neuro(2A) remained intact after pertussis toxin (PTX) pretreatment, which uncouples the receptor from G proteins. In contrast, the ability of [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAMGO) to internalize and down-regulate MORs in Neuro(2A) cells was completely abolished by PTX pretreatment. The requirement of functional MOR but not DOR in agonist-induced receptor down-regulation was further demonstrated by site- directed mutagenesis of the receptors. When Asp114 in transmembrane 2 of MOR was converted to alanine, the ability was abolished of DAMGO or morphine to inhibit forskolin-stimulated [3H]cAMP production in Neuro(2A) cells stably expressing this mutant receptor. There was a parallel decrease in agonist affinity and elimination of the agonist-induced receptor down-regulation. On the other hand, although the equivalent mutation of Asp95 to alanine in DOR likewise resulted in the inability of DPDPE to inhibit [3H]cAMP production, the ability of DPDPE to down-regulate this mutant receptor after 24-hr treatment was unaffected. This difference in MOR and DOR down-regulation could be caused by the differences in the ability of these two receptors to form high affinity complexes with G proteins. DOR retained the ability to form high affinity complexes even after PTX pretreatment or after mutation of Asp95 in transmembrane 2. In contrast, MOR existed only in the low affinity, uncoupled state after PTX pretreatment or after conversion of Asp114 to alanine. Therefore, in Neuro(2A) cells, agonist-induced opioid receptor down- regulation seems to depend directly on the formation of the high affinity receptor complexes and not on the activation of the receptors and subsequent transduction of the signals.
UR - http://www.scopus.com/inward/record.url?scp=0030742024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030742024&partnerID=8YFLogxK
U2 - 10.1124/mol.52.1.105
DO - 10.1124/mol.52.1.105
M3 - Article
C2 - 9224819
AN - SCOPUS:0030742024
SN - 0026-895X
VL - 52
SP - 105
EP - 113
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 1
ER -