Abstract
We study the texture evolution and deformation mechanisms in a Zr/Nb layered composite using a combination of electron backscattered diffraction, dislocation density evolution modeling, and polycrystal plasticity simulations. Zr/Nb composites with individual layer thicknesses ranging from 1 to 4 mm one-millimeter to four-micrometers were successfully fabricated at room temperature by accumulative roll bonding. Measured texture data during rolling and stress-strain curves in compression are presented. Under severe plastic deformation, we show that the textures of each polycrystalline phase correspond to textures of severely rolled single-phase rolled Zr and Nb. A visco-plastic self-consistent (VPSC)-dislocation density based model is applied to predict the deformation textures in the individual phases. The model indicates that large-strain deformation in Zr is accommodated by prismatic, pyramidal, and anomalously basal slip, and in Nb by both {110} and {112} slip. Our findings suggest that the polycrystalline layers of four micrometers per phase are still too coarse for the bimetal interfaces to have an effect on the texture evolution.
Original language | English (US) |
---|---|
Pages (from-to) | 16-28 |
Number of pages | 13 |
Journal | International Journal of Plasticity |
Volume | 57 |
DOIs | |
State | Published - Jun 2014 |
Bibliographical note
Funding Information:MK and MA were supported by the University of New Hampshire faculty startup funds. IJB was supported by a Los Alamos National Laboratory LDRD program 20140348ER. TMP and NAM wish to acknowledge support by the UC Lab Fees Research Program # UCD-12-0045.15. TN was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Keywords
- Accumulative roll bonding
- Deformation mechanisms
- Niobium
- Texture
- Zirconium