Text categorization models for high-quality article retrieval in internal medicine

Yindalon Aphinyanaphongs, Ioannis Tsamardinos, Alexander Statnikov, Douglas Hardin, Constantin F. Aliferis

Research output: Contribution to journalArticlepeer-review

127 Scopus citations

Abstract

Finding the best scientific evidence that applies to a patient problem is becoming exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply machine learning techniques to automatically identify high-quality, content-specific articles for one time period in internal medicine and compare their performance with previous Boolean-based PubMed clinical query filters of Haynes et al. The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naïve Bayes, a specialized AdaBoost algorithm, and linear and polynomial support vector machines were applied to identify these articles. The machine learning models were compared in each category with each other and with the clinical query filters using area under the receiver operating characteristic curves, 11-point average recall precision, and a sensitivity/specificity match method. In most categories, the data-induced models have better or comparable sensitivity, specificity, and precision than the clinical query filters. The polynomial support vector machine models perform the best among all learning methods in ranking the articles as evaluated by area under the receiver operating curve and 11-point average recall precision. This research shows that, using machine learning methods, it is possible to automatically build models for retrieving high-quality, content-specific articles using inclusion or citation by the ACP Journal Club as a gold standard in a given time period in internal medicine that perform better than the 1994 PubMed clinical query filters.

Original languageEnglish (US)
Pages (from-to)207-216
Number of pages10
JournalJournal of the American Medical Informatics Association
Volume12
Issue number2
DOIs
StatePublished - 2005

Bibliographical note

Funding Information:
Supported by the Vanderbilt MSTP program and NLM grant LM007948-02.

Fingerprint

Dive into the research topics of 'Text categorization models for high-quality article retrieval in internal medicine'. Together they form a unique fingerprint.

Cite this