TY - JOUR
T1 - Termination zones of functionally characterized spinothalamic tract neurons within the primate posterior thalamus
AU - Davidson, Steve
AU - Zhang, Xijing
AU - Khasabov, Sergey G.
AU - Simone, Donald A.
AU - Giesler, Glenn J.
PY - 2008/10
Y1 - 2008/10
N2 - The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca fascicularis. Each axon was located by antidromic activation at low stimulus amplitudes (<30 μA) and was then surrounded distally by a grid of stimulating points in which 500-μA stimuli were unable to activate the axon antidromically, thereby indicating the termination zone. Several nuclei within the posterior thalamus were targets of STT neurons: the posterior nucleus, suprageniculate nucleus, magnocellular part of the medial geniculate nucleus, and limitans nucleus. STT neurons projecting to the ventral posterior inferior nucleus were also studied. Twenty-five posterior thalamus-projecting STT neurons recorded in lumbar spinal cord were characterized by their responses to mechanical, thermal, and chemical stimuli. Sixteen of 25 neurons were recorded in the marginal zone and the balance was located within the deep dorsal horn. Thirteen neurons were classified as wide dynamic range and 12 as high threshold. One-third of STT neurons projecting to posterior thalamus responded to noxious heat (50°C). Two-thirds of those tested responded to cooling. Seventy-one percent responded to an intradermal injection of capsaicin. These data indicate that the primate STT transmits noxious and innocuous mechanical, thermal, and chemical information to multiple posterior thalamic nuclei.
AB - The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca fascicularis. Each axon was located by antidromic activation at low stimulus amplitudes (<30 μA) and was then surrounded distally by a grid of stimulating points in which 500-μA stimuli were unable to activate the axon antidromically, thereby indicating the termination zone. Several nuclei within the posterior thalamus were targets of STT neurons: the posterior nucleus, suprageniculate nucleus, magnocellular part of the medial geniculate nucleus, and limitans nucleus. STT neurons projecting to the ventral posterior inferior nucleus were also studied. Twenty-five posterior thalamus-projecting STT neurons recorded in lumbar spinal cord were characterized by their responses to mechanical, thermal, and chemical stimuli. Sixteen of 25 neurons were recorded in the marginal zone and the balance was located within the deep dorsal horn. Thirteen neurons were classified as wide dynamic range and 12 as high threshold. One-third of STT neurons projecting to posterior thalamus responded to noxious heat (50°C). Two-thirds of those tested responded to cooling. Seventy-one percent responded to an intradermal injection of capsaicin. These data indicate that the primate STT transmits noxious and innocuous mechanical, thermal, and chemical information to multiple posterior thalamic nuclei.
UR - http://www.scopus.com/inward/record.url?scp=57349150211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57349150211&partnerID=8YFLogxK
U2 - 10.1152/jn.90810.2008
DO - 10.1152/jn.90810.2008
M3 - Article
C2 - 18701750
AN - SCOPUS:57349150211
SN - 0022-3077
VL - 100
SP - 2026
EP - 2037
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 4
ER -