Abstract
We propose a technique to develop (and localize in) topological maps from light detection and ranging (Lidar) data. Localizing an au-tonomous vehicle with respect to a reference map in real-time is crucial for its safe operation. Owing to the rich information provided by Lidar sensors, these are emerging as a promising choice for this task. However, since a Lidar outputs a large amount of data every fraction of a second, it is progressively harder to process the information in real-time. Consequently, current systems have migrated towards faster alternatives at the expense of accuracy. To overcome this inherent trade-off between latency and accuracy, we propose a technique to develop topological maps from Lidar data using the orthogonal Tucker3 tensor decomposition. Our experimental evaluations demonstrate that in addition to achieving a high compression ratio as compared to full data, the proposed technique, TensorMap, also accurately detects the position of the vehicle in a graph-based representation of a map. We also analyze the robustness of the pro-posed technique to Gaussian and translational noise, thus initiating explorations into potential applications of tensor decompositions in Lidar data analysis.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1368-1372 |
Number of pages | 5 |
ISBN (Electronic) | 9781728112954 |
DOIs | |
State | Published - Jul 2 2018 |
Event | 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Anaheim, United States Duration: Nov 26 2018 → Nov 29 2018 |
Publication series
Name | 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings |
---|
Conference
Conference | 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 |
---|---|
Country/Territory | United States |
City | Anaheim |
Period | 11/26/18 → 11/29/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Keywords
- Lidar
- Localization of autonomous vehicles
- Orthogonal Tucker decompositions
- Scan-matching
- Topological maps