Tension modulates actin filament polymerization mediated by formin and profilin

Naomi Courtemanche, Ja Yil Lee, Thomas D. Pollard, Eric C. Greene

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin-actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p.

Original languageEnglish (US)
Pages (from-to)9752-9757
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number24
DOIs
StatePublished - Jun 11 2013

Fingerprint Dive into the research topics of 'Tension modulates actin filament polymerization mediated by formin and profilin'. Together they form a unique fingerprint.

Cite this