Abstract
Protected and specific delivery of nucleic acids to malignant cells remains a highly desirable approach for cancer therapy. Here we present data on the physical and chemical characteristics, mechanism of action, and pilot therapeutic efficacy of a tenfibgen (TBG)-shell nanocapsule technology for tumor-directed delivery of single stranded DNA/RNA chimeric oligomers targeting CK2αα′ to xenograft tumors in mice. The sub-50 nm size TBG nanocapsule (s50-TBG) is a slightly negatively charged, uniform particle of 15 - 20 nm size which confers protection to the nucleic acid cargo. The DNA/RNA chimeric oligomer (RNAi-CK2) functions to decrease CK2αα′ expression levels via both siRNA and antisense mechanisms. Systemic delivery of s50-TBG-RNAi-CK2 specifically targets malignant cells, including tumor cells in bone, and at low doses reduces size and CK2-related signals in orthotopic primary and metastatic xenograft prostate cancer tumors. In conclusion, the s50- TBG nanoencapsulation technology together with the chimeric oligomer targeting CK2αα′ offer significant promise for systemic treatment of prostate malignancy.
Original language | English (US) |
---|---|
Article number | e109970 |
Journal | PloS one |
Volume | 9 |
Issue number | 10 |
DOIs | |
State | Published - Oct 15 2014 |