Abstract
Foregut surgical techniques have advanced significantly over the years and have become increasingly popular. However, new challenges and technical considerations have arisen when dealing with reoperation for complications or surgical failure. This study focuses on the technical considerations and approach when dealing with reoperative foregut surgery, particularly redo hiatal hernia repair. We describe our approach starting from the preoperative workup to the procedural steps of the surgery. The present study describes the main steps for robotic reoperative hiatal hernia repair in a patient who had previously undergone laparoscopic hiatal hernia repair with Nissen fundoplication but did not present a recurrence of reflux and dysphagia symptoms. The patient is positioned supine with arms out and a footboard for steep Trendelenburg. We place six trocars, including an assistant port and a liver retractor port, to facilitate visualization and retraction. After docking the robot, we use a combination of electrocautery and sharp dissection to free the hernia sac and reduce the hiatal hernia. The previous fundoplication is then taken down carefully and the esophagus is mobilized through a transhiatal approach with a combination of blunt and sharp dissection until at least 3 cm of intra-abdominal esophageal length is achieved, after which a leak test is performed. We then perform a crural repair to reapproximate the hiatus with two posterior stitches and one anterior stitch. Lastly, a redo Nissen fundoplication is performed over a bougie, and endoscopy is used to confirm a loose stack-of-coin appearance. By emphasizing the crucial steps of redo hiatal hernia repair, including preoperative evaluation, our goal is to provide an approach for the foregut surgeon to maximize patient outcomes.
Original language | English (US) |
---|---|
Article number | e65532 |
Journal | Journal of Visualized Experiments |
Volume | 2023 |
Issue number | 199 |
DOIs | |
State | Published - Sep 2023 |
Bibliographical note
Publisher Copyright:© 2023 JoVE Journal of Visualized Experiments.
PubMed: MeSH publication types
- Journal Article
- Video-Audio Media