Teaching recommender systems at large scale: Evaluation and lessons learned from a hybrid MOOC

Joseph A. Konstan, J. D. Walker, D. Christopher Brooks, Educause Keith Brown, Michael D. Ekstrand

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

In the fall of 2013, we offered an open online Introduction to Recommender Systems through Coursera, while simultaneously offering a for-credit version of the course on-campus using the Coursera platform and a flipped classroom instruction model. As the goal of offering this course was to experiment with this type of instruction, we performed extensive evaluation including surveys of demographics, self-assessed skills, and learning intent; we also designed a knowledge-assessment tool specifically for the subject matter in this course, administering it before and after the course to measure learning, and again 5 months later to measure retention. We also tracked students through the course, including separating out students enrolled for credit from those enrolled only for the free, open course. Students had significant knowledge gains across all levels of prior knowledge and across all demographic categories. The main predictor of knowledge gain was effort expended in the course. Students also had significant knowledge retention after the course. Both of these results are limited to the sample of students who chose to complete our knowledge tests. Student completion of the course was hard to predict, with few factors contributing predictive power; the main predictor of completion was intent to complete. Students who chose a concepts-only track with hand exercises achieved the same level of knowledge of recommender systems concepts as those who chose a programming track and its added assignments, though the programming students gained additional programming knowledge. Based on the limited data we were able to gather, face-to-face students performed as well as the online-only students or better; they preferred this format to traditional lecture for reasons ranging from pure convenience to the desire to watch videos at a different pace (slower for English language learners; faster for some native English speakers). This article also includes our qualitative observations, lessons learned, and future directions.

Original languageEnglish (US)
Pages (from-to)1-23
Number of pages23
JournalACM Transactions on Computer-Human Interaction
Volume22
Issue number2
DOIs
StatePublished - Apr 1 2015

Bibliographical note

Publisher Copyright:
© 2015 ACM.

Keywords

  • Learning assessment
  • Massively online open course (MOOC)

Fingerprint

Dive into the research topics of 'Teaching recommender systems at large scale: Evaluation and lessons learned from a hybrid MOOC'. Together they form a unique fingerprint.

Cite this