Abstract
When performing multi-robot tasks, sensory feedback is crucial in reducing uncertainty for correct execution. Yet the utilization of sensors should be planned as an integral part of the task planning, taken into account several factors such as the tolerance of different inferred properties of the scene and interaction with different agents. In this paper we handle this complex problem in a principled, yet efficient way. We use surrogate predictors based on open-loop simulation to estimate and bound the probability of success for specific tasks. We reason about such task-specific uncertainty approximants and their effectiveness. We show how they can be incorporated into a multi-robot planner, and demonstrate results with a team of robots performing assembly tasks.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2932-2939 |
Number of pages | 8 |
ISBN (Electronic) | 9781538630815 |
DOIs | |
State | Published - Sep 10 2018 |
Event | 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia Duration: May 21 2018 → May 25 2018 |
Publication series
Name | Proceedings - IEEE International Conference on Robotics and Automation |
---|---|
ISSN (Print) | 1050-4729 |
Conference
Conference | 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 |
---|---|
Country/Territory | Australia |
City | Brisbane |
Period | 5/21/18 → 5/25/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.