TY - JOUR
T1 - Targeting the Wingless Signaling Pathway with Natural Compounds as Chemopreventive or Chemotherapeutic Agents
AU - Teiten, Marie-Helene
AU - Gaascht, Francois
AU - Dicato, Mario
AU - Diederich, Marc
PY - 2012
Y1 - 2012
N2 - The aberrant activation of the wingless (Wnt) signaling pathway is a key element involved in carcinogenesis as Wnt regulates a variety of cellular processes including proliferation, differentiation, survival, apoptosis and cell motility. Upon Wnt receptor activation, the canonical "Wnt/beta-catenin" as well as the non canonical "Wnt/planar cell polarity, Wnt/Ca²⁺" pathways are activated. This offers multiple possibilities to target the aberrant regulation of this signaling pathway in order to counteract cancer proliferation. During the last decade, natural compounds from both marine and terrestrial origins were tested for their potential to modulate the expression of specific genes related to the Wnt signaling cascade but also for their anti-carcinogenic properties. It appears that phenolic compounds (e.g., caffeic acid phenethyl ester, curcumin and derivatives, green, white and black tea, resveratrol, quercetin, isoflavone, fisetin, and isoflavone) as well as other small molecules were able to inhibit the Wnt signaling through the modulation of beta-catenin expression, transcriptional activity and of the subsequent expression of Wnt target genes. Altogether, these findings underline the fact that Wnt signaling could be considered as a promising target for innovative strategies for cancer treatment and prevention.
AB - The aberrant activation of the wingless (Wnt) signaling pathway is a key element involved in carcinogenesis as Wnt regulates a variety of cellular processes including proliferation, differentiation, survival, apoptosis and cell motility. Upon Wnt receptor activation, the canonical "Wnt/beta-catenin" as well as the non canonical "Wnt/planar cell polarity, Wnt/Ca²⁺" pathways are activated. This offers multiple possibilities to target the aberrant regulation of this signaling pathway in order to counteract cancer proliferation. During the last decade, natural compounds from both marine and terrestrial origins were tested for their potential to modulate the expression of specific genes related to the Wnt signaling cascade but also for their anti-carcinogenic properties. It appears that phenolic compounds (e.g., caffeic acid phenethyl ester, curcumin and derivatives, green, white and black tea, resveratrol, quercetin, isoflavone, fisetin, and isoflavone) as well as other small molecules were able to inhibit the Wnt signaling through the modulation of beta-catenin expression, transcriptional activity and of the subsequent expression of Wnt target genes. Altogether, these findings underline the fact that Wnt signaling could be considered as a promising target for innovative strategies for cancer treatment and prevention.
KW - beta-catenin
KW - cancer
KW - chemoprevention
KW - chemotherapy
KW - natural compounds
KW - wingless signaling pathway
U2 - 10.2174/138920112798868593
DO - 10.2174/138920112798868593
M3 - Review article
C2 - 21466435
SN - 1389-2010
VL - 13
SP - 245
EP - 254
JO - Current Pharmaceutical Biotechnology
JF - Current Pharmaceutical Biotechnology
ER -