Tailoring Ag Electron Donating Ability for Organohalide Reduction: A Bilayer Electrode Design

Ali Abbaspourtamijani, Dwaipayan Chakraborty, Henry Sheldon White, Matthew Neurock, Yue Qi

Research output: Contribution to journalArticlepeer-review

Abstract

Electrochemical reduction of organohalides provides a green approach in the reduction of environmental pollutants, the synthesis of new organic molecules, and many other applications. The presence of a catalytic electrode can make the process more energetically efficient. Ag is known to be a very good electrode for the reduction of a wide range of organohalides. Herein, we examine the elementary adsorption and reaction steps that occur on Ag and the changes that result from changes in the Ag-coated metal, strain in Ag, solvent, and substrate geometry. The results are used to develop an electrode design strategy that can possibly be used to further increase the catalytic activity of pure Ag electrodes. We have shown how epitaxially depositing one to three layers of Ag on catalytically inert or less active support metal can increase the surface electron donating ability, thus increasing the adsorption of organic halide and the catalytic activity. Many factors, such as molecular geometry, lattice mismatches, work function, and solvents, contribute to the adsorption of organic halide molecules over the bilayer electrode surface. To isolate and rank these factors, we examined three model organic halides, namely, halothane, bromobenzene (BrBz), and benzyl bromide (BzBr) adsorption on Ag/metal (metal = Au, Bi, Pt, and Ti) bilayer electrodes in both vacuum and acetonitrile (ACN) solvent. The different metal supports offer a range of lattice mismatches and work function differences with Ag. Our calculations show that the surface of Ag becomes more electron donating and accessible to adsorption when it forms a bilayer with Ti as it has a lower work function and almost zero lattice mismatch with Ag. We believe this study will help to increase the electron donating ability of the Ag surface by choosing the right metal support, which in turn can improve the catalytic activity of the working electrode.

Original languageEnglish (US)
Pages (from-to)15705-15715
Number of pages11
JournalLangmuir
Volume39
Issue number44
DOIs
StatePublished - Nov 7 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Tailoring Ag Electron Donating Ability for Organohalide Reduction: A Bilayer Electrode Design'. Together they form a unique fingerprint.

Cite this