Systems view on spatial planning and perception based on invariants in agent-environment dynamics

Bérénice Mettler, Zhaodan Kong, Bin Li, Jonathan Andersh

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes.

Original languageEnglish (US)
Article number439
JournalFrontiers in Neuroscience
Volume9
Issue numberJAN
DOIs
StatePublished - Jan 1 2015

    Fingerprint

Keywords

  • Decision making
  • Dynamics
  • Guidance
  • Perception
  • Visual attention

Cite this