Synthetic phosphopeptides enable quantitation of the content and function of the four phosphorylation states of phospholamban in cardiac muscle

Naa Adjeley D. Ablorh, Xiaoqiong Dong, Zachary M. James, Qiang Xiong, Jianyi Zhang, David D. Thomas, Christine B. Karim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

We have studied the differential effects of phospholamban (PLB) phosphorylation states on the activity of the sarcoplasmic reticulum Ca-ATPase (SERCA). It has been shown that unphosphorylated PLB (U-PLB) inhibits SERCA and that phosphorylation of PLB at Ser-16 or Thr-17 relieves this inhibition in cardiac sarcoplasmic reticulum. However, the levels of the four phosphorylation states of PLB (U-PLB, P16-PLB, P17-PLB, and doubly phosphorylated 2P-PLB) have not been measured quantitatively in cardiac tissue, and their functional effects on SERCA have not been determined directly. We have solved both problems through the chemical synthesis of all four PLB species. We first used the synthetic PLB as standards for a quantitative immunoblot assay, to determine the concentrations of all four PLB phosphorylation states in pig cardiac tissue, with and without left ventricular hypertrophy (LVH) induced by aortic banding. In both LVH and sham hearts, all phosphorylation states were significantly populated, but LVH hearts showed a significant decrease in U-PLB, with a corresponding increase in the ratio of total phosphorylated PLB to U-PLB. To determine directly the functional effects of each PLB species, we co-reconstituted each of the synthetic peptides in phospholipid membranes with SERCA and measured calcium-dependent ATPase activity. SERCA inhibition was maximally relieved by P16-PLB (the most highly populated PLB state in cardiac tissue homogenates), followed by 2P-PLB, then P17-PLB. These results show that each PLB phosphorylation state uniquely alters Ca2+ homeostasis, with important implications for cardiac health, disease, and therapy.

Original languageEnglish (US)
Article numberA20
Pages (from-to)29397-29405
Number of pages9
JournalJournal of Biological Chemistry
Volume289
Issue number42
DOIs
StatePublished - Oct 17 2014

Bibliographical note

Publisher Copyright:
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

Fingerprint

Dive into the research topics of 'Synthetic phosphopeptides enable quantitation of the content and function of the four phosphorylation states of phospholamban in cardiac muscle'. Together they form a unique fingerprint.

Cite this