Abstract
Multisubstituted pyrroles are commonly found in many bioactive small molecule scaffolds, yet the synthesis of highly-substituted pyrrole cores remains challenging. Herein, we report an efficient catalytic synthesis of 2-heteroatom-substituted (9-BBN or SnR3) pyrroles via Ti-catalyzed [2 + 2 + 1] heterocoupling of heteroatom-substituted alkynes. In particular, the 9-BBN-alkyne coupling reactions were found to be very sensitive to Lewis basic ligands in the reaction: exchange of pyridine ligands from Ti to B inhibited catalysis, as evidenced by in situ11B NMR studies. The resulting 2-boryl substituted pyrroles can then be used in Suzuki reactions in a one-pot sequential fashion, resulting in pentasubstituted 2-aryl pyrroles that are inaccessible via previous [2 + 2 + 1] heterocoupling strategies. This reaction provides a complementary approach to previous [2 + 2 + 1] heterocouplings of TMS-substituted alkynes, which could be further functionalized via electrophilic aromatic substitution.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 10236-10242 |
| Number of pages | 7 |
| Journal | Chemical Science |
| Volume | 11 |
| Issue number | 37 |
| DOIs | |
| State | Published - Oct 7 2020 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.