TY - JOUR
T1 - Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero
AU - Eunju, Lee Tae
AU - Kee, Eun Lee
AU - Jong, Seok Jeong
AU - Kyung, Byung Yoon
PY - 2008/5/21
Y1 - 2008/5/21
N2 - Synthesis of semiconductor nanoparticles with uniform shapes, sizes, and compositions in series with a gradual size reduction has not been achieved for two-dimensional molecular sheets. We report a large-scale (>2.6 g) synthesis of 0.75-nm-thick diamond-shape lepidocrocite-type titanate molecular sheets with the sizes decreasing from (27.3, 19.1) to (7.7, 5.5), where the numbers in parentheses represent the long and short diagonal lengths, respectively, in nm. This is the first example of synthesizing semiconductor nanoparticles in series with the dimensionality reduction from two to zero, without coating the surfaces with surface-passivating ligands. The titanate molecular sheets showed three exciton-absorption bands in the 4.0-6.5 eV region, the absorption energies of which increased with decreasing the area. Contrary to the common belief, the per-unit cell oscillator strengths gradually increased with increasing area and the per-particle oscillator strengths increased in proportion to the area. The average reduced exciton masses along the two diagonal axes were 0.10 and 0.11 me, respectively, which were much smaller than those of bulk titanates (by 60-130 times). The estimated average Bohr radii along the two-diagonal axes were 4.8 and 4.3 nm, respectively.
AB - Synthesis of semiconductor nanoparticles with uniform shapes, sizes, and compositions in series with a gradual size reduction has not been achieved for two-dimensional molecular sheets. We report a large-scale (>2.6 g) synthesis of 0.75-nm-thick diamond-shape lepidocrocite-type titanate molecular sheets with the sizes decreasing from (27.3, 19.1) to (7.7, 5.5), where the numbers in parentheses represent the long and short diagonal lengths, respectively, in nm. This is the first example of synthesizing semiconductor nanoparticles in series with the dimensionality reduction from two to zero, without coating the surfaces with surface-passivating ligands. The titanate molecular sheets showed three exciton-absorption bands in the 4.0-6.5 eV region, the absorption energies of which increased with decreasing the area. Contrary to the common belief, the per-unit cell oscillator strengths gradually increased with increasing area and the per-particle oscillator strengths increased in proportion to the area. The average reduced exciton masses along the two diagonal axes were 0.10 and 0.11 me, respectively, which were much smaller than those of bulk titanates (by 60-130 times). The estimated average Bohr radii along the two-diagonal axes were 4.8 and 4.3 nm, respectively.
UR - http://www.scopus.com/inward/record.url?scp=43949118793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43949118793&partnerID=8YFLogxK
U2 - 10.1021/ja711467g
DO - 10.1021/ja711467g
M3 - Article
C2 - 18419121
AN - SCOPUS:43949118793
SN - 0002-7863
VL - 130
SP - 6534
EP - 6543
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 20
ER -