Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system

Filippo Caschera, Vincent Noireaux

Research output: Contribution to journalArticlepeer-review

124 Scopus citations

Abstract

Cell-free protein synthesis is becoming a useful technique for synthetic biology. As more applications are developed, the demand for novel and more powerful in vitro expression systems is increasing. In this work, an all Escherichia coli cell-free system, that uses the endogenous transcription and translation molecular machineries, is optimized to synthesize up to 2.3 mg/ml of a reporter protein in batch mode reactions. A new metabolism based on maltose allows recycling of inorganic phosphate through its incorporation into newly available glucose molecules, which are processed through the glycolytic pathway to produce more ATP. As a result, the ATP regeneration is more efficient and cell-free protein synthesis lasts up to 10 h. Using a commercial E. coli strain, we show for the first time that more than 2 mg/ml of protein can be synthesized in run-off cell-free transcription-translation reactions by optimizing the energy regeneration and waste products recycling. This work suggests that endogenous enzymes present in the cytoplasmic extract can be used to implement new metabolic pathways for increasing protein yields. This system is the new basis of a cell-free gene expression platform used to construct and to characterize complex biochemical processes in vitro such as gene circuits.

Original languageEnglish (US)
Pages (from-to)162-168
Number of pages7
JournalBiochimie
Volume99
Issue number1
DOIs
StatePublished - Apr 2014

Keywords

  • Cell-free protein synthesis
  • Escherichia coli extract
  • Long-lived cell-free transcription-translation
  • Maltose
  • Synthetic biology

Fingerprint Dive into the research topics of 'Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system'. Together they form a unique fingerprint.

Cite this