Synthesis and characterization of submicron-to-micron scale, monodisperse, spherical, and nonporous zirconia particles

Bingwen Yan, Clayton V. McNeff, Peter W. Carr, Alon V. McCormick

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Monodisperse, spherical, and nonporous zirconia particles ranging from submicrons to microns for use as supports for capillary electrophoresis and chromatography were synthesized by the controlled hydrolysis of zirconium tetra-alkoxides in alcohol solutions in the presence of long-chain organic acids. Particle characteristics varied as a function of water concentration, the chain length of the organic acid, aging time, temperature, and extent of stirring. Changing these experimental parameters affected particle size, particle size distribution, and the degree of particle aggregation. Submicron particles were made by increasing the water concentration and decreasing aging time. Particle size increases as temperature during the aging period increases. Most importantly, large monodisperse particles (4 μm) could be made by extended stirring. In general, we found that particle size increases as the chain length of the organic acid increases. We also found that gentle rotation during the aging period prevented both particle settling and secondary nucleation. This allowed the production of large particles. BET nitrogen adsorption uptake measurements demonstrate that the particles could be sintered, without aggregating them, to remove virtually all internal porosity.

Original languageEnglish (US)
Pages (from-to)707-713
Number of pages7
JournalJournal of the American Ceramic Society
Volume88
Issue number3
DOIs
StatePublished - Dec 1 2005

Fingerprint Dive into the research topics of 'Synthesis and characterization of submicron-to-micron scale, monodisperse, spherical, and nonporous zirconia particles'. Together they form a unique fingerprint.

  • Cite this