TY - JOUR
T1 - Synthesis and characterization of poly(vinylcyclohexane) derivatives
AU - Gehlsen, Mark D.
AU - Weimann, Peter A.
AU - Bates, Frank S.
AU - Harville, Steven
AU - Mays, Jimmy W.
AU - Wignall, George D.
PY - 1995/7/30
Y1 - 1995/7/30
N2 - Six nearly monodisperse substituted poly(styrene) homopolymers, poly(styrene) (PS), poly(2‐methylstyrene) (P2MS), poly(3‐methylstyrene) (P3MS), poly(4‐methylstyrene) (P4MS), poly(tertiary‐butylstyrene) (PtBS), and poly(α‐methylstyrene) (FαMS) were anionically polymerized and subsequently saturated using heterogeneous hydrogenation techniques to poly(vinylcyclohexane) (PVCH), poly(2‐methylvinylcyclohexane) (P2MVCH), poly(3‐methylvinylcyclohexane) (P3MVCH), poly(4‐methylvinylcyclohexane) (P4MVCH), and poly(tertiary‐butylvinylcyclohexane) (PtBVCH), respectively. In each case, except PαMS, the materials were saturated to > 99% conversion with no chain degradation. PS hydrogenations required the addition of small amounts of tetrahydrofuran to the reaction solvent cyclohexane to enhance miscibility and eliminate large‐scale chain degradation. Density gradient and differential scanning calorimetry (DSC) measurements were used to characterize the density and glass transition temperature, Tg, of the unsaturated and saturated polymers. Saturation reduces the density by 3% to 11% and changes Tg substantially. The greatest variation in Tg is obtained with the 3‐methyl substituted species where a 63°C increase is observed, while the highest measured Tg is 186°C for P2MVCH. Small‐angle neutron scattering (SANS) experiments on binary mixtures of hydrogenous and deuterium labeled PVCH derivatives provided a determination of bulk chain statistics. The statistical segment length is relatively insensitive to vinylcyclohexane ring substitution, except with P3MVCH where a 20% greater value is obtained. ©1995 John Wiley & Sons, Inc.
AB - Six nearly monodisperse substituted poly(styrene) homopolymers, poly(styrene) (PS), poly(2‐methylstyrene) (P2MS), poly(3‐methylstyrene) (P3MS), poly(4‐methylstyrene) (P4MS), poly(tertiary‐butylstyrene) (PtBS), and poly(α‐methylstyrene) (FαMS) were anionically polymerized and subsequently saturated using heterogeneous hydrogenation techniques to poly(vinylcyclohexane) (PVCH), poly(2‐methylvinylcyclohexane) (P2MVCH), poly(3‐methylvinylcyclohexane) (P3MVCH), poly(4‐methylvinylcyclohexane) (P4MVCH), and poly(tertiary‐butylvinylcyclohexane) (PtBVCH), respectively. In each case, except PαMS, the materials were saturated to > 99% conversion with no chain degradation. PS hydrogenations required the addition of small amounts of tetrahydrofuran to the reaction solvent cyclohexane to enhance miscibility and eliminate large‐scale chain degradation. Density gradient and differential scanning calorimetry (DSC) measurements were used to characterize the density and glass transition temperature, Tg, of the unsaturated and saturated polymers. Saturation reduces the density by 3% to 11% and changes Tg substantially. The greatest variation in Tg is obtained with the 3‐methyl substituted species where a 63°C increase is observed, while the highest measured Tg is 186°C for P2MVCH. Small‐angle neutron scattering (SANS) experiments on binary mixtures of hydrogenous and deuterium labeled PVCH derivatives provided a determination of bulk chain statistics. The statistical segment length is relatively insensitive to vinylcyclohexane ring substitution, except with P3MVCH where a 20% greater value is obtained. ©1995 John Wiley & Sons, Inc.
KW - poly(vinylcyclohexane) derivatives
KW - polymer hydrogenation
UR - http://www.scopus.com/inward/record.url?scp=33646205388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646205388&partnerID=8YFLogxK
U2 - 10.1002/polb.1995.090331010
DO - 10.1002/polb.1995.090331010
M3 - Article
AN - SCOPUS:33646205388
SN - 0887-6266
VL - 33
SP - 1527
EP - 1536
JO - Journal of Polymer Science Part B: Polymer Physics
JF - Journal of Polymer Science Part B: Polymer Physics
IS - 10
ER -