Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release

Timothy F. Walseth, Hon Cheung Lee

Research output: Contribution to journalArticlepeer-review

241 Scopus citations


Cyclic ADP-ribose (cADPR) is a naturally-occurring metabolite of NAD+ that is as effective as inositol trisphosphate in mobilizing intracellular Ca2+. A series of analogs modified at the 8-position of the adenine group were synthesized for the investigation of the relationship between the structure of the metabolite and its Ca2+-mobilizing activity. Substitution with an amino group at the 8-position of the adenine ring produced an antagonist. The 1H-NMR spectrum of 8-amino-cADPR showed characteristics of that of cADPR and confirmed the replacement of the 8-proton. By itself, 8-amino-cADPR (150 nM) did not induce Ca2+ release from sea-urchin-egg homogenates but totally blocked cADPR (135 nM) from doing so. The effect was reversible, since high concentrations of cADPR could overcome the inhibition. Addition of 8-amino-cADPR to egg homogenates during the cADPR-induced Ca2+ release blocked the release immediately, demonstrating the effectiveness of the antagonist. Measurements of [32P]cADPR binding to its microsomal binding site showed that 8-amino-cADPR was as effective as cADPR itself in competing for the binding site. In addition to blocking cADPR from releasing Ca2+, 8-amino-cADPR also inhibited cADPR from potentiating Ca2+-release induced by either divalent cations or by caffeine. Two other 8-substituted analogs were also synthesized. Both 8-Br- and 8-azido-cADPR were also antagonists, although with less potency than 8-amino-cADPR. These results show that alterations at the 8-position of the adenine group do not inhibit cADPR from binding to its receptor but do eliminate the ability of the metabolite to activate the Ca2+-release mechanism.

Original languageEnglish (US)
Pages (from-to)235-242
Number of pages8
JournalBBA - Molecular Cell Research
Issue number3
StatePublished - Sep 13 1993


  • (S. purpuratus)
  • (Sea urchin egg)
  • 8-Amino-cyclic ADP-ribose
  • Calcium ion mobilization
  • Calcium ion release antagonist
  • Microsome
  • cyclic ADP-ribose

Fingerprint Dive into the research topics of 'Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca<sup>2+</sup> release'. Together they form a unique fingerprint.

Cite this