Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation

Sook Hee Ku, Sahng Ha Lee, Chan Beum Park

Research output: Contribution to journalArticlepeer-review

181 Scopus citations

Abstract

The interactions between cells and materials play critical roles in the success of new scaffolds for tissue engineering, since chemical and physical properties of biomaterials regulate cell adhesion, proliferation, migration, and differentiation. We have developed nanofibrous substrates that possess both topographical cues and electroactivity. The nanofiber scaffolds were fabricated through the electrospinning of polycaprolactone (PCL, a biodegradable polymer) and polyaniline (PANi, a conducting polymer) blends. We investigated the ways in which those properties influenced myoblast behaviors. Neither nanofiber alignment nor PANi concentration influenced cell growth and proliferation, but cell morphology changed significantly from multipolar to bipolar with the anisotropy of nanofibers. According to our analyses of myosin heavy chain expression, multinucleate myotube formation, and the expression of differentiation-specific genes (myogenin, troponin T, MHC), the differentiation of myoblasts on PCL/PANi nanofibers was strongly dependent on both nanofiber alignment and PANi concentration. Our results suggest that topographical cues and the electroactivity of nanofibers synergistically stimulate muscle cell differentiation to make PCL/PANi nanofibers a suitable scaffold material for skeletal tissue engineering.

Original languageEnglish (US)
Pages (from-to)6098-6104
Number of pages7
JournalBiomaterials
Volume33
Issue number26
DOIs
StatePublished - Sep 2012

Bibliographical note

Funding Information:
This study was supported by grants from the National Research Foundation (NRF) via National Research Laboratory ( R0A-2008-000-20041-0 ), Converging Research Center ( 2009-0082276 ), and Intelligent Synthetic Biology Center of Global Frontier Project ( 2011-0031957 ).

Keywords

  • Conducting polymer
  • Electrospinning
  • Myotube formation
  • Nanofiber alignment
  • Tissue engineering

Fingerprint

Dive into the research topics of 'Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation'. Together they form a unique fingerprint.

Cite this