Abstract
We define a new 4-dimensional symplectic cut and paste operations arising from the generalized star relations (ta0 ta1 ta2 ⋯ta2g+1 )2g+1=tb1 tb2 gtb3 , also known as the trident relations, in the mapping class group Γg,3 of an orientable surface of genus g≥1 with 3 boundary components. We also construct new families of Lefschetz fibrations by applying the (generalized) star relations and the chain relations to the families of words (tc1 tc2 ⋯tc2g−1 tc2g tc2g+1 2tc2g tc2g−1 ⋯tc2 tc1 )2n=1, (tc1 tc2 ⋯tc2g tc2g+1 )(2g+2)n=1 and (tc1 tc2 ⋯tc2g−1 tc2g )2(2g+1)n=1 in the mapping class group Γg of the closed orientable surface of genus g≥1 and n≥1. Furthermore, we show that the total spaces of some of these Lefschetz fibrations are irreducible exotic symplectic 4-manifolds. Using the degenerate cases of the generalized star relations, we also realize all elliptic Lefschetz fibrations and genus two Lefschetz fibrations over S2 with non-separating vanishing cycles.
Original language | English (US) |
---|---|
Article number | 106920 |
Journal | Advances in Mathematics |
Volume | 360 |
DOIs | |
State | Published - Jan 22 2020 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Inc.
Keywords
- 4-manifold
- Lefschetz fibration
- Mapping class group
- Symplectic surgery
- Trident relation