SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

Russell Reeves, Alicia A. Petryk, Elliot J. Kastner, Jinjin Zhang, Hattie Ring, Michael Garwood, P. Jack Hoopes

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

Original languageEnglish (US)
Title of host publicationEnergy-Based Treatment of Tissue and Assessment VIII
EditorsThomas P. Ryan
ISBN (Electronic)9781628414165
StatePublished - 2015
Event2015 SPIE Conference: Energy-Based Treatment of Tissue and Assessment - San Francisco, United States
Duration: Feb 8 2015Feb 9 2015

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


Conference2015 SPIE Conference: Energy-Based Treatment of Tissue and Assessment
Country/TerritoryUnited States
CitySan Francisco


  • IONP imaging
  • IONP quantification
  • MRI


Dive into the research topics of 'SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery'. Together they form a unique fingerprint.

Cite this