SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater Robots

Md Jahidul Islam, Ruobing Wang, Junaed Sattar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

This paper presents a holistic approach to saliencyguided visual attention modeling (SVAM) for use by autonomous underwater robots. Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images. The SVAM-Net architecture is configured in a unique way to jointly accommodate bottom-up and top-down learning within two separate branches of the network while sharing the same encoding layers. We design dedicated spatial attention modules (SAMs) along these learning pathways to exploit the coarselevel and fine-level semantic features for SOD at four stages of abstractions. The bottom-up branch performs a rough yet reasonably accurate saliency estimation at a fast rate, whereas the deeper top-down branch incorporates a residual refinement module (RRM) that provides fine-grained localization of the salient objects. Extensive performance evaluation of SVAM-Net on benchmark datasets clearly demonstrates its effectiveness for underwater SOD. We also validate its generalization performance by several ocean trials’ data that include test images of diverse underwater scenes and waterbodies, and also images with unseen natural objects. Moreover, we analyze its computational feasibility for robotic deployments and demonstrate its utility in several important use cases of visual attention modeling.

Original languageEnglish (US)
Title of host publicationRobotics
Subtitle of host publicationScience and Systems
EditorsKris Hauser, Dylan Shell, Shoudong Huang
PublisherMIT Press Journals
ISBN (Print)9780992374785
DOIs
StatePublished - 2022
Event18th Robotics: Science and Systems, RSS 2022 - New York City, United States
Duration: Jun 27 2022 → …

Publication series

NameRobotics: Science and Systems
ISSN (Electronic)2330-765X

Conference

Conference18th Robotics: Science and Systems, RSS 2022
Country/TerritoryUnited States
CityNew York City
Period6/27/22 → …

Bibliographical note

Publisher Copyright:
© 2022, MIT Press Journals. All rights reserved.

Fingerprint

Dive into the research topics of 'SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater Robots'. Together they form a unique fingerprint.

Cite this