TY - JOUR
T1 - Sur l'existence locale pour une équation de scalaires actifs
AU - Hu, Weiwei
AU - Kukavica, Igor
AU - Ziane, Mohammed
N1 - Publisher Copyright:
© 2015 .
PY - 2015/3/1
Y1 - 2015/3/1
N2 - We address the local well-posedness for the active scalar equation ∂tθ+u{dot operator}∇θ=0 where u=-∇⊥(-δ)-1+β/2θ. This equation reduces to the Euler equation if β=0 and to the quasi-geostrophic equation for β=1. In this note, we prove the local existence for the equation in the space H1+β+ε, where ε>0, for 1<β<2. An earlier result by Chae, Constantin, Córdoba, Gancedo, and Wu shows the local existence in H4. The improvement is due to a sharper commutator estimate, while the fractional exponent is obtained through a different treatment of the nonlinearity using a double commutator inequality.
AB - We address the local well-posedness for the active scalar equation ∂tθ+u{dot operator}∇θ=0 where u=-∇⊥(-δ)-1+β/2θ. This equation reduces to the Euler equation if β=0 and to the quasi-geostrophic equation for β=1. In this note, we prove the local existence for the equation in the space H1+β+ε, where ε>0, for 1<β<2. An earlier result by Chae, Constantin, Córdoba, Gancedo, and Wu shows the local existence in H4. The improvement is due to a sharper commutator estimate, while the fractional exponent is obtained through a different treatment of the nonlinearity using a double commutator inequality.
UR - http://www.scopus.com/inward/record.url?scp=84922816273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922816273&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2014.12.008
DO - 10.1016/j.crma.2014.12.008
M3 - Article
AN - SCOPUS:84922816273
SN - 1631-073X
VL - 353
SP - 241
EP - 245
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 3
ER -