Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery

Michael J. Falkowski, Michael A. Wulder, Joanne C. White, Mark D. Gillis

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


Information needs associated with forest management and reporting requires data with a steadily increasing level of detail and temporal frequency. Remote sensing satellites commonly used for forest monitoring (eg, Landsat, SPOT) typically collect imagery with sufficient temporal frequency, but lack the requisite spatial and categorical detail for some forest inventory information needs. Aerial photography remains a principal data source for forest inventory; however, information extraction is primarily accomplished through manual processes. The spatial, categorical, and temporal information requirements of large-area forest inventories can be met through sample-based data collection. Opportunities exist for very high spatial resolution (VHSR; ie, <1 m) remotely sensed imagery to augment traditional data sources for large-area, sample-based forest inventories, especially for inventory update. In this paper, we synthesize the state-of-the-art in the use of VHSR remotely sensed imagery for forest inventory and monitoring. Based upon this review, we develop a framework for updating a sample-based, large-area forest inventory that incorporates VHSR imagery. Using the information needs of the Canadian National Forest Inventory (NFI) for context, we demonstrate the potential capabilities of VHSR imagery in four phases of the forest inventory update process: stand delineation, automated attribution, manual interpretation, and indirect attribute modelling. Although designed to support the information needs of the Canadian NFI, the framework presented herein could be adapted to support other sample-based, large-area forest monitoring initiatives.

Original languageEnglish (US)
Pages (from-to)403-423
Number of pages21
JournalProgress in Physical Geography
Issue number3
StatePublished - 2009

Bibliographical note

Copyright 2010 Elsevier B.V., All rights reserved.


  • Forest
  • Image processing
  • Inventory
  • Landsat
  • Monitoring
  • Quickbird
  • Sampling
  • Update
  • Very high spatial resolution
  • Worldview


Dive into the research topics of 'Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery'. Together they form a unique fingerprint.

Cite this