Supersolidity of cold-atom Bose-Fermi mixtures in optical lattices

Peter P. Orth, Doron L. Bergman, Karyn Le Hur

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


We investigate a cold-atom mixture of spinless bosons and fermions in two-dimensional optical lattices. In the presence of a nested Fermi surface, the bosons may develop a fascinating supersolid behavior characterized by a finite superfluid density as well as a spatial density wave order. Focusing on the triangular lattice geometry and combining a general Landau-Ginzburg-Wilson approach with microscopically derived mean-field theory, we find an exotic supersolid phase at a fermionic band filling of nf =3/4 with a kagome-type crystalline order. We also address the case of anisotropic hopping amplitudes and show that striped supersolid phases emerge on the square and triangular lattices. For weak interactions, the supersolid competes with phase separation. For strong intraspecies and interspecies interactions, with the total number of fermions and bosons corresponding to one particle per site, the bosons form an alternating Mott insulator ground state. Finally, for a mixture of Rb87 K40 and Na23 Li6, we show that supersolidity can be observed in the range of accessible temperatures in the square lattice geometry.

Original languageEnglish (US)
Article number023624
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number2
StatePublished - Aug 28 2009


Dive into the research topics of 'Supersolidity of cold-atom Bose-Fermi mixtures in optical lattices'. Together they form a unique fingerprint.

Cite this