Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions

E. G. Kalnins, W. Miller, G. S. Pogosyan

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two-dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the special functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial bases for each of the nonsubgroup bases, not just the subgroup Cartesian and polar coordinate cases, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the n-dimensional isotropic quantum oscillator.

Original languageEnglish (US)
Pages (from-to)6439-6467
Number of pages29
JournalJournal of Mathematical Physics
Volume37
Issue number12
DOIs
StatePublished - Dec 1996

Fingerprint Dive into the research topics of 'Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions'. Together they form a unique fingerprint.

Cite this