Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system

C. Kimloi Gomez-Smith, Timothy M. Lapara, Raymond M. Hozalski

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 107 copies cm-2), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 106 copies cm-2). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the water supply infrastructure.

Original languageEnglish (US)
Pages (from-to)8432-8440
Number of pages9
JournalEnvironmental Science and Technology
Volume49
Issue number14
DOIs
StatePublished - Jul 21 2015

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

Fingerprint

Dive into the research topics of 'Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system'. Together they form a unique fingerprint.

Cite this