TY - JOUR
T1 - Submarine metamorphism of gabbros from the Mid-Cayman rise
T2 - An oxygen isotopic study
AU - Ito, Emi
AU - Clayton, Robert N.
PY - 1983/3
Y1 - 1983/3
N2 - Oxygen isotopic compositions of minerals in 22 samples of submarine gabbros were determined. The gabbros were collected using the submersible Alvin from the 700 m vertical section of the rift-valley wall of the Mid-Cayman spreading center. Our study indicates that in the Mid-Cayman Rise seawater barely reached the bottom of the plutonic layer. Abundant seawater penetration (water/rock mass ratio > 1) was limited to the upper part of the plutonic layer. From the observed oxygen isotopic compositions of coexisting minerals, and from the experimental and empirical determinations of equilibrium fractionation of oxygen isotopes for mineral-water, and mineral-mineral pairs, we show the following: (1) pyroxene and olivine did not exchange oxygen with seawater, (2) plagioclase is in isotopic disequilibrium with pyroxene; (3) the rate of oxygen exchange in plagioclase was not slowed by the absence of cation exchange; (4) plagioclase and amphibole have exchanged oxygen with seawater or isotopically modified seawater (δ18O ≤ 3%.); and (5) amphibole has exchanged or acquired (during formation) hydrogen from seawater at 380°C ≤ T ≤ 600°C. The decrease in extent of isotopic exchange of plagioclase and the decrease in amphibole abundance with depth indicate that seawater flux decreased rapidly with depth (water/rock mass ratio falling from 1.7 to 0.2 over a 300 m interval).
AB - Oxygen isotopic compositions of minerals in 22 samples of submarine gabbros were determined. The gabbros were collected using the submersible Alvin from the 700 m vertical section of the rift-valley wall of the Mid-Cayman spreading center. Our study indicates that in the Mid-Cayman Rise seawater barely reached the bottom of the plutonic layer. Abundant seawater penetration (water/rock mass ratio > 1) was limited to the upper part of the plutonic layer. From the observed oxygen isotopic compositions of coexisting minerals, and from the experimental and empirical determinations of equilibrium fractionation of oxygen isotopes for mineral-water, and mineral-mineral pairs, we show the following: (1) pyroxene and olivine did not exchange oxygen with seawater, (2) plagioclase is in isotopic disequilibrium with pyroxene; (3) the rate of oxygen exchange in plagioclase was not slowed by the absence of cation exchange; (4) plagioclase and amphibole have exchanged oxygen with seawater or isotopically modified seawater (δ18O ≤ 3%.); and (5) amphibole has exchanged or acquired (during formation) hydrogen from seawater at 380°C ≤ T ≤ 600°C. The decrease in extent of isotopic exchange of plagioclase and the decrease in amphibole abundance with depth indicate that seawater flux decreased rapidly with depth (water/rock mass ratio falling from 1.7 to 0.2 over a 300 m interval).
UR - http://www.scopus.com/inward/record.url?scp=0021038562&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021038562&partnerID=8YFLogxK
U2 - 10.1016/0016-7037(83)90276-4
DO - 10.1016/0016-7037(83)90276-4
M3 - Article
AN - SCOPUS:0021038562
SN - 0016-7037
VL - 47
SP - 535
EP - 546
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
IS - 3
ER -