Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation

Christopher C. Cline, Nessa N. Johnson, Bin He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

The goal of this work is to develop a focal transcranial magnetic stimulation (TMS) system using a multichannel coil array for high-resolution neuromodulation. We proposed a novel spatially-distributed stimulation strategy to significantly improve the focality of TMS. Computer simulations were conducted to evaluate the proposed approach and test the merits of multichannel TMS. Three different multichannel coil arrays were modeled in addition to a conventional figure-8 coil for comparison. Simulations were performed on finite element head models of six subjects constructed from anatomical MR images via an automated pipeline. Multichannel TMS arrays exhibited significantly more focal induced electric field magnitudes compared to the figure-8 coil. Additionally, electrical steering of stimulation sites without physical movement of the coil array was demonstrated.

Original languageEnglish (US)
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2083-2086
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - Nov 4 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
CountryItaly
CityMilan
Period8/25/158/29/15

Fingerprint Dive into the research topics of 'Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation'. Together they form a unique fingerprint.

  • Cite this

    Cline, C. C., Johnson, N. N., & He, B. (2015). Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 (pp. 2083-2086). [7318798] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Vol. 2015-November). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2015.7318798